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The asymmetric attractor neural networks designed by the Monte Carlo– �MC-� adaptation rule are shown to
be promising candidates for pattern recognition. In such a neural network with relatively low symmetry, when
the members of a set of template patterns are stored as fixed-point attractors, their attraction basins are shown
to be isolated islands embedded in a “chaotic sea.” The sizes of these islands can be controlled by a single
parameter. We show that these properties can be used for effective pattern recognition and rejection. In our
method, the pattern to be identified is attracted to a template pattern or a chaotic attractor. If the difference
between the pattern to be identified and the template pattern is smaller than a predescribed threshold, the
pattern is attracted to the template pattern automatically and thus is identified as belonging to this template
pattern. Otherwise, it wanders in a chaotic attractor for ever and thus is rejected as an unknown pattern. The
maximum sizes of these islands allowed by this kind of neural networks are determined by a modified
MC-adaptation rule which are shown to be able to dramatically enlarge the sizes of the islands. We illustrate
the use of our method for pattern recognition and rejection with an example of recognizing a set of Chinese
characters.
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I. INTRODUCTION

Pattern recognition and its many different applications
have long been studied �1–8�. Many methods and techniques
have been proposed �9–18�. Among them, the template
matching, syntactic or structural matching, statistical classi-
fication, and neural network approaches are well known. A
brief description and comparison of these approaches were
mentioned in Ref. �1�.

In recent years, the neural network approach
�2,3,5,7,9,10,12,18–20,22–27� has drawn more and more at-
tention because of its several remarkable advantages: �1�
This approach deals with information parallelly, which is
much more effective than other approaches that deal with
information serially. In fact, the neural network approach
deals with information mimicing the real neural networks of
living things. �2� The training algorithms or learning rules
are quite universal, by which the artificial neural networks
used for pattern recognition are established. That is to say
that these learning rules depend insensitively on domain-
specific knowledge and thus can be easily applied to many
different problems. �3� The neural networks have the capa-
bility of learning nonlinear input-output relationships, offer-
ing the potential to solve complicated problems.

The popular neural networks employed in pattern recog-
nition are the feed-forward networks �7,20,22�. To design
such a neural network, the training process uses all of the
available training samples. For example, if such a network is
designed to identify four types of tanks, four sets of training
samples should be provided. Each set is obtained by coding

different photos of one type of tanks. When the training
samples are true representatives of the targets and their
amount is large enough, the feed-forward networks show a
powerful capability in pattern recognition. However, the
training set is usually too small in practice and the neural
network designed by them is fallacious.

As another important family of artificial neural networks,
the attractor neural networks �2,9,19,23–27� also have poten-
tial applications to pattern recognition. An attractor neural
network is a dynamic system. For a general symmetric net-
work, the possible attractors of the system are the fixed-point
attractors or the period-2 periodic attractors; for a general
asymmetric network, the fixed-point attractors, long-period
periodic attractors, and chaotic attractors may coexist. To
employ such a network to identify the four types of tanks,
four corresponding template patterns are stored as four fixed-
point attractors. When a pattern to be identified is input as an
initial state, the system will relax to a template pattern if it
has higher similarity. In other words, if this initial state be-
longs to the attraction basin of a fixed-point attractor, the
network will converge to the corresponding template pattern.
In this way, recognition can be done. Thus, to design an
attractor neural network for pattern recognition, one can use
only one sample for each type of tanks.

However, the attractor neural networks have been rarely
used in pattern recognition because of the following reasons.
First, a huge number of unwanted fixed-point attractors co-
exist with the attractors of the template patterns. As a result,
the pattern to be identified has a great probability of being
attracted to unwanted attractors �i.e., wrong recognition�
even though it shows high similarity with one of the template
patterns. These unwanted attractors are an awkward problem
in attractor neural networks. Several strategies have been
proposed to suppress this kind of attractors �23–27�, but no*Electronic address: zhaoh@xmu.edu.cn.
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one can eliminate them completely. Second, a rejection
mechanism is absent for the existing attractor neural net-
works. Because of lacking a rejection mechanism, a pattern
to be identified may be attracted to a template pattern though
it shows low similarity with this template pattern. Rejection
is an essential factor in pattern recognition. A preferable rec-
ognition algorithm should be able to not only recognize a
pattern if it has high similarity with a template pattern but
also reject recognizing a pattern as any template pattern if it
has low similarity with them. The threshold of similarity,
above which a pattern to be identified should be recognized,
is dependent on the specific applications and highly expected
to be controllable.

Recently, an algorithm named the Monte Carlo– �MC-�
adaptation rule was developed in Ref. �9� to design asym-
metric attractor neural networks. By applying this rule, the
performance of the networks can be controlled by a param-
eter c. It is found that the neural networks show different
dynamic behavior as c changes. In the range of c�c1, the
attraction basins of the template patterns are embedded into a
“chaotic sea.” That is, in this range one chaotic attractor
coexists with those fixed-point attractors acting as template
patterns. This range is called the “chaos phase,” and neural
networks with this phase have a low degree of symmetry. In
the range of c1�c�c2, those template patterns are the only
attractors and any initial state will be attracted to one of
them. This range is referred as the “memory phase” and neu-
ral networks with this phase have a moderate degree of sym-
metry. When the parameter c exceeds c2, one encounters the
so-called “mixture phase.” In this phase, the unwanted fixed-
point attractors appear and coexist with those of the template
patterns. The degree of symmetry in this range is relatively
high.

The chaos phase and the memory phase are a particular
behavior of the attractor neural networks designed by the
MC-adaptation rule. Since the unwanted attractors are elimi-
nated completely, the neural networks with memory phase
are more suitable for storing memory patterns. However, for
the purpose of pattern recognition, this phase is not good
enough because any initial state will be attracted to a tem-
plate pattern and the rejection will never be carried out.

In this paper, we show that the neural networks with
chaos phase are intrinsically suitable for pattern recognition.
When a pattern to be identified has high similarity with a
template pattern, it will be attracted to the template pattern
and thus be recognized. When it has no similarity or has a
low degree of similarity with any template pattern, it will
wander in the chaotic attractor forever. That is, it will never
be attracted to a template pattern and result in a wrong rec-
ognition. In this way, the neural networks with chaos phase
overcome the two limitations of the usual attractor neural
networks for pattern recognition.

The threshold of similarity above which the initial pattern
should be recognized as the corresponding template pattern
can be controlled by the parameter c in the range of c�c1.
However, this controllable range is unexpectedly narrow in
the neural networks designed by the original MC-adaptation
rule. This drawback limits the application scope of this ap-
proach. We therefore develop a modified version of the MC-
adaptation rule in present paper to extend the controllable
range.

The rest of this paper is organized as following. We intro-
duce the basic idea of the MC-adaptation rule in Sec. II and
present a modified version in Sec. III. Why and how the
neural networks with chaos phase can be used for pattern
recognition are explained carefully in Sec. IV. As an example
of an application, in this section, we use the neural network
designed by the modified MC-adaptation rule to identify the
printed Chinese characters which are distorted by random
noise. The last section is the conclusion.

II. BRIEF INTRODUCTION OF THE ORIGINAL
MC-ADAPTATION RULE

An attractor neural network with N neurons may be
described by

si�t + 1� = sgn�hi�t��, hi�t� = �
j=1

N

Jijsj�t�, i, j = 1, . . . ,N .

�1�

Here, si�t�� �+1,−1� represents the state of the ith neuron
at time t and hi�t� is the local field acting on it. The synaptic
coupling between the ith and jth neurons is represented
by Jij. To design an attractor neural network is to find a
coupling matrix J, by which a given set of template patterns
��i

� ,�=1, . . . , p� with �i
�= ±1 is stored as a set of fixed-point

attractors. As a fixed point, the local field of the �th pattern

hi
� must satisfy h̄i

��i
�=� j=1

N Jij� j
� or, equivalently,

h̄i
� = �i

��
j=1

N

Jij� j
�, �2�

with h̄i
��0. For the purpose of memory retrieval and pattern

recognition, it is desired that the attraction basins of these
fixed-point attractors be big enough. In other words, a good
design procedure should not only can store the given tem-
plate patterns as fixed-point attractors but also can control
their attraction basins.

The attraction basin of a fixed-point attractor is related to
the core which is defined as a set of initial states attracted to
this attractor by only one step of evolution. Roughly, the
larger the core, the bigger the attraction basin. To understand
what determines the size of the core, let us consider a state

��̃i
�� obtained by making n mutations � jk

� →−� jk
� on the �th

pattern, where �jk ,k=1, . . . ,n� represent the positions of
these mutations. One may easily derive the local fields re-

lated to this mutated pattern: h̃i
�= h̄i

�−2�i
��k=1

n Jijk
� jk

�. It is
clear that the new state will stop at ��i

�� after only one step of

evolution if h̃i
� is positive for i=1, . . . ,N. Therefore, the size

of the core is related to the maximum of n, denoted by nmax,

below which �h̃i
�� remain positive. There are no less than

2nmax states belonging to the core. The maximum of nmax is

obtained by making h̄i
� as big as possible and ��i

��k=1
n Jijk

� jk
� �

as small as possible. This is a typical problem of constrained
optimization, and the MC-adaptation rule provides an effec-
tive procedure to solve it.
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The basic idea of the MC-adaptation rule is to limit

�Jij��d �thus ��i
��k=1

n Jijk
� jk

� ��nd� and push the set of �h̄i
�� to

the positive region by continuously adapting �Jij�. In this
paper, for the sake of simplicity, we restrict �Jij�=1 and the
adaptation is degenerated as Jij→−Jij. The adaptation pro-

cess is stopped when the condition of h̄i
��c is satisfied for

�=1, . . . , p and i=1, . . . ,N. It is easy to obtain nmax	c /2d.
Therefore, the size of the core can be controlled by the pa-
rameter c and so are the attraction basins of the template
patterns. When c�0, all the given patterns are surely stored
as fixed-point attractors and have nonvanishing attraction
basins.

To estimate the relative size of the attraction basin of the
�th template pattern, one may measure the percentage of
random initial states attracted to this pattern. It is denoted by
P�. Therefore, Ptotal=��=1

p P� gives the total percentage of
these initial states attracted to the set of template patterns.
This quantity has been commonly employed to measure the
quality of the neural networks in previous works �9,21�.

The relationship between Ptotal and c is shown in Fig. 1
for the neural network designed by the original MC-
adaptation rule with N=1000 and p=30. For each point, we
average Ptotal over 10 sets of randomly selected template
patterns; for each set, 10 000 randomly selected initial states
are checked out. As usual, the pattern �−�i

�� is equated to
��i

�� because of the symmetric property of the dynamics, Eq.
�1�. Figure 1 clearly indicates that the parameter space of c is
divided into three ranges by two turning points, which will
be denoted in the following as c1 and c2, respectively.
Around the first turning point, Ptotal changes from Ptotal=0 at
c=26 to Ptotal=1 at c=28. Notice that the parameter c only
takes even integers in the situation of �Jij�=1; this change is
quite sharp. The last value of c that satisfies Ptotal�c�=0 is
defined as c1. At the second turning point, Ptotal changes
from Ptotal=1 at c=76 to Ptotal�1 at c=78. Similarly, the
last value of c that satisfies Ptotal�c�=1 is defined as c2. Ac-
cording to these definitions, one obtains c1=26 and c2=76 in
Fig. 1.

The parameter c determines the dynamic behavior of the
system. In a different range of c, the system has different
dynamic behavior. In the range of c�c1, it has Ptotal=0. In
this range, a chaotic attractor coexists with the p template
patterns. We will further discuss the dynamical behavior in
this range in Sec. IV. In the range of c1�c�c2, it has

Ptotal=1. This fact indicates that the template patterns are the
only attractors and the unwanted attractors are suppressed
completely. In the range of c�c2, it has Ptotal�1. This result
reveals that the unwanted attractors appear and coexist with
those of the template patterns. The three ranges have been
discussed in detail in Ref. �9� and named the “chaos phase,”
the “memory phase,” and the “mixture phase,” respectively.

III. MODIFIED MC-ADAPTATION RULE

The original MC-adaptation rule leads to h̄i
��c. As a re-

sult, the local fields of all the template patterns distribute
over the half-closed intervals of hi

��−c and hi
��c for

�i
�=1 and −1, respectively. In this section, a modified version

of the MC-adaptation rule is presented in order to further
control the distribution of the local fields �hi

��. The next sec-
tion will illustrate the benefit of this modification for pattern
recognition.

The goal of the modified rule is to constrain �h̄i
�� to the

interval of �c ,c�� with c��c�0 and to make the width of
this interval as small as possible. The procedure used to
achieve this goal is described in the following. For the sake
of simplicity, we restrict Jij = ±1 as mentioned above. The
design procedure starts with randomly endowing Jij with ±1.
Then, a set of p patterns is randomly selected as the template
patterns to be stored. In the beginning, since Jij is random,
the local fields �hi

�� satisfy a Gaussian distribution with zero

mean. Our task is to “drive” �h̄i
�� into the closed interval

�c ,c�� by continual adaptation of Jij→−Jij. For the conve-
nience of description, we define a new parameter

bi
� = − �h̄i

� − �c + c��/2� + �c� − c�/2. �3�

If bi
��0, one obtains c� h̄i

��c�. Therefore, bi
��0 is the

criterion that the design goal is achieved. In other words,
when bi

��0 is approached, �hi
�� are limited in the interval of

�c ,c�� for �i
�= +1 or the interval of �−c� ,−c� for �i

�=−1.

Notice from Eq. �2� that h̄i
� is merely determined by the

ith row of J, so the coupling matrix can be designed row by
row independently. We apply the following three steps re-
peatedly to design each row of J. At the first step, we calcu-
late �bi

� ,�=1, . . . , p� and find the minimum bi
min of this set.

There are usually many terms taking the same minimum, and
the goal of this step is to search the set �bi

�1 , . . . ,bi
�m� satis-

fying the condition of bi
�=bi

min for �� ��1 , . . . ,�m�. At the
second step, for each Jij � �Jij ; j=1, . . . ,N , j� i� we calculate
�Ci

��i
�Jij� j

� ,�=�1 , . . . ,�m� and count the number of the

negative terms mi
j in each subset. Here, Ci

�=−1 for h̄i
��c

and Ci
�= +1 for others. Let mi

max represent the maximum of
mi

j. Again many terms of mi
j may take the same value of

mi
max. To obtain the set of index �j1 , . . . , jn� satisfying

mi
j =mi

max is the goal of this step. At the third step, we ran-
domly pick up an index j from the set of �j1 , . . . , jn� and
make an adaptation Jij→−Jij. This adaptation changes the

sign of �i
�Jij� j

�. As a result, mi
max terms in �h̄i

�1 , . . . , h̄i
�m� will

be pushed towards the interval �c ,c��. It is obvious that

mi
max�n /2 in general. Therefore, �h̄i

�� will be pushed to-

FIG. 1. Ptotal against c for the neural network designed by the
original MC-adaptation rule with N=1000 and p=30.
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wards the interval �c ,c�� gradually by continuously repeating
the three steps. The design procedure stops when the crite-
rion bi

��0 is satisfied for �=1, . . . , p.
Applying the same procedure to each row of J, one

may obtain a network with bi
��0 for i=1, . . . ,N and

�=1, . . . , p. That is, all hi
� are pushed into the two pre-

described intervals �c ,c�� and �−c� ,−c�. The parameter c�
can be set independently. In this paper, it is determined in the
following way. Fixing c at a value and temporally fixing the
interval �c ,c��, we proceed with the designing procedure to

push all of the h̄i
� into this interval. Then decrease c� a little

and repeat the same operation. This procedure of decrease is
stopped when it fails to push all of the hi

� into the anticipated
intervals. In this way, the two control parameters degenerate
into one.

In order to make a comparison, Fig. 2 shows the probabil-
ity distributions of �hi

��, which are obtained by the original
MC-adaptation rule and the modified MC-adaptation rule
with c=18 for N=1000 and p=30. The consequences of the
two design procedures are obviously different.

The dynamical behavior of the neural networks designed
by the modified rule is qualitatively the same as that of the
neural networks designed by the original rule. Figure 3
shows Ptotal against c for several p in the case of N=1000.
The results indicate that the primary advantages are inher-
ited. For each p, the parameter c is also divided into three
ranges—i.e., the chaos phase, the memory phase, and the

mixture phase by two turning points c1 and c2.
The turning point c1, which divides the chaos phase and

the memory phase, appears as an universal constant indepen-
dence of the storage capacity. That is, it remains almost un-
changed for different p as shown in Fig. 3. The turning point
c2, where the Ptotal changes from Ptotal=1 to Ptotal�1, has
different values depending on p. It decreases with an in-
crease of p. These are similar to the neural networks de-
signed by the original MC-adaptation rule �9�.

However, there is an significant difference. By comparing
Fig. 1 with Fig. 3, one may realize that the value of c1 of the
neural networks designed by the modified procedure is much
bigger than that of the neural networks designed by the origi-
nal procedure. At N=1000, the former has c1=36, while the
latter has c1=26. In the next section, one will see that this
improvement is crucial for practical applications.

IV. APPLICATION OF THE CHAOS PHASE TO PATTERN
RECOGNITION

For the purpose of pattern recognition, as mentioned in
the Introduction, we are more interested in the neural net-
works with chaos phase. Thus it is worthy of more detailed
descriptions. It can be confirmed that a random initial state is
not attracted to a limit cycle with long period because we
have never observed its recurrence in a reasonable time
scale. We believe that there exists a single chaotic attractor
because we have checked that different initial states show the
same asymptotic behavior: the Lyapunov exponents calcu-
lated by these states are positive and approach each other
�this method is usually applied to test whether different ini-
tial orbits are attracted to the same chaotic attractor in low-
dimensional systems�. For neural networks, it is true that
there is no exact chaotic orbit since the configuration space is
finite. However, it is large enough �21000 in our case� for
practical applications. We would like to point out that the
dynamic behaviors of the neural networks designed by the
MC-adaptation rule are different from those of other asym-
metric neural networks �28–30�, in which various limit
cycles with different lengths may coexist.

The result of Ptotal=0 in the chaos phase implies that the
probability of a random initial state attracted to the template
patterns is negligible or, in other words, such an initial state
is almost surely attracted to the chaotic attractor. However, it
does not mean that the attraction basins of those template
patterns are vanishing. On the contrary, according to the
analysis in Sec. II, the template patterns in this phase surely
have nonvanishing attraction basins because of c�0.

Let m represent the normalized overlap of two system
states, which describes their similarity. To measure the dif-
ference between them, one may introduce a new variable ds
defined as

ds =
1 − m

2
. �4�

According to this definition, Nds gives the number of differ-
ent elements between the two states.

For the �th pattern ��i
��, the attraction basin can be esti-

mated in the following way. Fixing a value of ds, we ran-

FIG. 2. The probability distributions of hi
� obtained by

the modified MC-adaptation rule �circles� and the original
MC-adaptation rule �short-dashed line� with N=1000, p=30, and
c=18.

FIG. 3. Ptotal against c for the neural networks designed by the
modified MC-adaptation rule with N=1000 and p=20 �circles�, 30
�triangles�, and 60 �squares�, correspondingly.
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domly select Nds elements from this pattern and flip them by
�i

�→−�i
�. Then, we evolve the system using this mutated

pattern as the initial state to find whether or not it is attracted
to ��i

��. In this way, one may calculate the percentage of this
kind of initial states being attracted to the �th pattern, which

is denoted by P̄� to distinguish from P�. We further apply P̄

to represent the mean value of P̄� obtained by averaging

over all the template patterns. Figure 4�a� plots P̄ against ds
for several values of c in the case of N=1000 and p=30. The
short-dashed lines give the results obtained by the original
MC-adaptation rule, and the solid lines are obtained by the
modified design procedure.

For each c, one may notice that P̄ remains 1 when
ds is small and declines quickly once ds exceeds a threshold
value, denoted as dsm. Therefore, one can estimate the
states that are attracted to a template pattern by

V=�i=1
N P̄CN

i 	�i=1
NdsmCN

i . The V is just the mean size of the
attraction basin of a template pattern. As shown in Fig. 4�a�,
Ndsm is usually much smaller than N, so V is negligibly
small compared with the huge configuration space which has
2N states. As a result, a random initial state is most likely to
be attracted to the chaotic attractor instead of any one of the
template patterns. This fact suggest to us to image the rela-
tionship between the attraction basins of the template pat-
terns and the attraction basin of the chaotic attractor as some
isolated islands embedded into a chaotic sea. This property is
much suitable for pattern recognition.

First, one can control the size of the attraction basins of
the template patterns through the parameter c. In this way
one can control the recognition capability of such a neural
network.

In the terminology of pattern recognition, ds may be in-
terpreted as the degree of difference between a template pat-

tern and a pattern to be identified; P̄ may be interpreted as
the recognition rate of the template pattern with a certain
disturbance ds. The results shown in Fig. 4�a� mean that a
disturbed template pattern will be surely recognized if
ds�dsm�c�; otherwise, it may be rejected. The dsm depends
on c. The bigger the c, the larger the dsm, and thus the better
the recognition capability.

Since the chaos phase is restricted in the range of c�c1,
beyond which the memory phase appears, the maximum of
dsm is determined by c1. For the neural network designed by
the original MC-adaptation rule with N=1000, Fig. 1 shows
c1
26 and Fig. 4�a� indicates dsm�c1�
0.07. It implies that
this network can only recognize patterns with no more than a
7% difference from a template pattern as the template pat-
tern. This limits the application scope of this type of neural
networks.

We have shown that applying the modified MC-adaptation
rule can extend c1 from c1=26 to c1=36 in the case of
N=1000. Further calculations indicate that dsm depends on c
as dsm
e	c, which implies that a tiny increment of c1 may
lead to a remarkable increase of dsm. Therefore, the modified
MC-adaptation rule would remarkably enlarge the control-
lable range of dsm. Figure 4�a� shows that this is the case: the
maximum of dsm is enlarged to dsm�c1�
0.18. It means that
the system can recognize a pattern as a template pattern even
if it has a 18% difference from this template pattern. This is
sufficient for most practical applications.

Second, the huge attraction basin of the chaotic attractor
provides a credible mechanism of rejection. Rejection means
that when a pattern does not belong to any one of the tem-
plate patterns the system should reject it as an unknown one.
This is crucial for certain applications, such as the identifi-
cation of clients in bank services.

In our neural networks, if the pattern to be identified is a
disturbed version of a template pattern, it has two possibili-
ties. When the degree of the disturbance is small—i.e.,
ds�dsm—the pattern can be recognized as the template pat-
tern. When the disturbance is big—i.e., ds�dsm—the pattern
still has chance to be attracted to the template pattern and
thus be recognized; if the pattern is not attracted to the tem-
plate pattern, it will wander in the chaotic attractor for ever.
This can be practically guaranteed because for other template
patterns this disturbed pattern is equivalent to a random ini-
tial state. If the pattern to be identified is an unknown pattern
whose template pattern has not be stored as a fixed-point
attractor of the network, it corresponds to a random initial
state for all of the stored template patterns. As a random
initial state, it has Ptotal=0 in the chaos phase. Therefore,
these patterns have no chance of being attracted to any one

FIG. 4. �a� P̄ against ds in the case of N=1000 and p=30. The solid lines represent the results obtained by the modified MC-adaptation
rule with several c, from right to left: c=36,34,26,18; the short-dashed lines represent the results obtained by the original MC-adaptation

rule with c=26 �the right one� and c=20 �the left one�. �b� P̄ against ds at c=c1 for the neural networks designed by the modified
MC-adaptation rule, from right to left: N=1500, 1000, and 576. The stars represent the results obtained by using the Chinese characters as
the template patterns.
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of the template patterns and thus result in wrong recognition.
In other worlds, a neural network designed by the MC-
adaptation rule realizes the rejection by attracting these pat-
terns to the chaotic attractor with the probability of 100%.

Whether an initial state has converged to a template pat-
tern or wanders in the chaotic attractor can be easily judged
by calculating the overlap between two continuous states
�si�t−1�� and �si�t�� of the trajectory. If the overlap satisfies
m=1, one may affirm that the system reaches a fixed-point
attractor. Since there are no unwanted fixed-point attractors
in the chaos phase, this attractor must be a template pattern.
If the overlap still varies after a sufficiently long time of
evolution, one may judge that the system is wandering in the
chaotic attractor. For practical applications, a time threshold
of about t
10 is large enough to make such a judgement.

Another relevant problem is the size effect. For pattern
recognition, it is worth studying the size-dependent behavior
of dsm�c1� as a function of the system size N. Figure 4�b�
illustrates the results for N=576, 1000, and 1500 with
p=15, 30, and 45, respectively. In this case, the neural net-
works have the approximate storage ratio: i.e., p /N	0.03.
The c1 is found to be 26, 36, and 42 for N=576, 1000, and
1500, respectively. It can be seen that dsm�c1� increases with
an increase of N. At N=1500, dsm�c1�	0.21. This is a de-
sired property in pattern recognition, since it implies that one
can improve the recognition capacity by making use of a
larger neural network.

In order to impressively show the feasibility of using at-
tractor neural networks for pattern recognition, as an ex-
ample we apply the modified MC-adaptation rule to printed
Chinese character recognition. About 3775 Chinese charac-
ters are commonly applied in documents, and each of them is
described as a black and white picture by a 24
24 matrix
with the elements of +1 and −1 representing black and white.
Then, each character can be coded by a 576-dimension vec-
tor. The first row of Fig. 5 shows 15 Chinese characters
picked up randomly from the 3775 characters, which will
serve as the template patterns in our experiment. We then
designed a neural network with N=576 by using the modi-

fied MC-adaptation rule with c=c1 to store the 15 characters
as fixed-point attractors.

We exam the recognition rate P̄ as a function of the dis-
turbance degree ds and show the result in Fig. 4�b�. It is
almost exactly consistent with the result obtained by using
the randomly selected patterns as the template patterns. In
the other rows of Fig. 5, we show samples with different
disturbance degrees. In the case of ds�0.14 all samples are
recognized correctly; one may even notice that the samples
may be disturbed dramatically. In the case of ds�0.14, the
recognition rate decreases quickly. More importantly, our
calculations indicate that when a sample is disturbed too
much to be attracted to the corresponding template pattern, it
will wander in the chaotic attractor for ever. We have never
observed that such a sample is attracted to other template
patterns and thus result in a wrong recognition.

V. CONCLUSION

The neural networks designed by the MC-adaptation rule
with chaos phase are suitable for pattern recognition. Com-
pared with traditional strategies, they exhibit some unique
advantages. One is the presence of the chaotic attractor
which provides a natural mechanism of rejection. By this
mechanism, the system will never recognize unknown pat-
terns and disturbed template patterns as a template pattern. In
other words, these patterns have no chance of being attracted
to any template pattern and result in a wrong recognition.
This is the case since these patterns correspond to the ran-
dom initial states and for the random state it has Ptotal=0 in
the chaos phase. The other one is that the recognition capac-
ity of the neural network is controllable through the param-
eter c. In this way, one may preset the recognition capacity of
a neural network.

The turning point c1 is crucial for pattern recognition. It
determines the range of the chaos phase, so as to determine
the maximal recognition capacity of the neural networks.
The modified version of the MC-adaptation rule is proved to
be efficient for enlarging the parameter range of the chaos
phase and thus enlarges the domains of using such neural
networks for pattern recognition. Our investigations of size-
dependent behavior show that the recognition capacity can
be further improved by increasing the size of the networks.
For this purpose, one may expect that the recognition capac-
ity can be further improved by releasing the limitation of
�Jij�=1. The example of printed Chinese character recogni-
tion indicates the practical application possibilities of the
neural networks designed by our method.
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FIG. 5. An example of Chinese character recognition.
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